
December 5, 2019

Tutorial - Exporting Models to Simulink

Introduction
The Matlab and Simulink tools are widely used for modeling and simulation, especially the fields
of control and system engineering. This tutorial will show how Hopsan models can be exported to
Simulink. This enables powerful development methods, such as testing a controller made in Simulink
on a model built in Hopsan. It can also be used for connecting Hopsan with other programs through
Simulink, or to run real-time simulations. Furthermore, Simulink has powerful toolboxes, such as
system identification, otimization and control, which can be used on Hopsan models.

Requirements
To do this tutorial, you will need Matlab/Simulink (of a relatively new version). You also need a
compatible C++ compiler, usually Microsoft Visual C++ (MSVC). The version of MSVC depends on
the version of Matlab. See http://www.mathworks.com/support/compilers for more information.
It is advised

Exporting a Model to Simulink
We will now export a model of a position servo from Hopsan to Simulink. Then we will build a simple
controller in Simulink, and connect it to the exported model. It will also be demonstrated how you can
change the model in Hopsan without having to redo the export process.

1. Open the model
Open the Position Servo example model. It can be found on the welcome screen, or through the
Help menu. When opened, it will look like this:

1

http://www.mathworks.com/support/compilers

December 5, 2019

Remove the controller in Hopsan The model in Hopsan contains a PI-controller. We will not
need this, since we are going to build a controller in Simulink instead. Remove the controller, so
that the model looks like below:

To communicate between Simulink and Hopsan we need some interface ports. These are defined
by Interface components in Hopsan. We want to use control signal to the valve for input, and
the actual position of the piston for output. Add one input and one output component:

Connectivity
Input Interface Component
Output Interface Component

Connect the input component to the directional valve and name it "u". Then connect the output
component to the position sensor and name it "y". The model should then look like this:

2

December 5, 2019

2. Export the model
Now create a new empty folder anywhere on your hard drive. Then click the export to S-function
button in the toolbar:

Export model to Simulink S-function

The program will ask you whether or not you want to disable port labels. This is not necessary
for most reasonably new versions of Matlab. Click OK, then browse to the folder you created
and select it. Hopsan will then export all required files to there.

3. Configure Matlab
Now start Matlab and wait for it to open. It is necessary to configure Matlab so that it uses the
correct compiler. This is done with the mex -setup command. Run it, choose Microsoft Visual
Studio, then select yes (y). It should look like below.
>> mex -setup

Welcome to mex -setup . This utility will help you set up
a default compiler . For a list of supported compilers , see
http :// www. mathworks .com/ support / compilers / R2013b / win64 .html

Please choose your compiler for building MEX - files :

Would you like mex to locate installed compilers [y]/n? y

Select a compiler :
[1] Microsoft Software Development Kit (SDK) 7.1 in C:\ Program Files (x86)\

Microsoft Visual Studio 10.0

[0] None

Compiler : 1

Please verify your choices :

Compiler : Microsoft Software Development Kit (SDK) 7.1
Location : C:\ Program Files (x86)\ Microsoft Visual Studio 10.0

Are these correct [y]/n? y

If the Visual Studio compiler does not appear, it is not installed correctly, or the installed ver-
sion is not compatible with your version of Matlab. Consult the Matlab user manual for more
information.

4. Compile the S-function
Set Matlab’s working directory to the folder you exported the model to. One of the exported files
from Hopsan is a compilation script, called HopsanSimulinkCompile.m. Running this script will
compile the S-function from the exported source code using the compiler selected above. Call
the script by writing the file name in the console. If successful, it should look like this:
>> HopsanSimulinkCompile
Compiling S- function from Hopsan model ...
Finished .

If you look in the folder, you can see that a new file called Position_Servo.mexw64 (or
Position_Servo.mexw32 for 32-bit systems) was created. This is the compiled S-function,
which we can now use in Simulink.

5. Start Simulink
Start Simulink by clicking on the icon or by writing simulink in the console. Then create a new
empty model.

3

December 5, 2019

6. Open the Hopsan model in Simulink
Now locate the Simulink block called "S-function", located under "Simulink\User-Defined Func-
tions". Drag it to your model to add it. Then double-click on it and change the parameter "S-
function name" to the file name of the S-function without file extension, i.e. "Position_Servo".
Then click ok to close the dialog. The block should now look like this:

We have one input called "u" ad one output called "y", representing the input and output
interface components in Hopsan. There is also an output called "DEBUG". This is used to tell
us if something is wrong. It should normally be zero.

7. Build a simple controller in Simulink
Simulink is commonly used by control engineers to construct control algorithms. We will now
build a very simple proportional controller, to demonstrate how this can be used on a Hopsan
model. Add a Step block as a reference signal, a Subtract and a Gain block for the controller
and a Scope to view the results. Connect them as the picture below:

Change the "Final value" parameter of the step to 0.5 and the "Gain" parameter in the gain
block to 0.02. Set the simulation stop time to 2 seconds.

8. Simulate the model in Simulink
Now press the Run button in Simulink. After the simulation as finished, double-click on the
scope. It may be necessary to uncheck the Limit number of data points option to get see all
results. If everything works correctly, the result should look like this:

4

December 5, 2019

If you like to, you can verify the results by creating a similar controller in Hopsan and run the
same simulation there.

9. Modify the Hopsan model
As long as the interface components are not changed, it is possible to modify the Hopsan model
without re-compiling. Try changing the mass component in Hopsan to a mass with friction:

Also change the damping parameter (B_p) in the piston component to 1000. Then click save
as (not save!) and overwrite the model in the exported directory. This is the model used by
Simulink. Then simulate from Simulink again and look at the results. The results are now
different, even though we did not re-export the model.

It is thus possible to modify the model from Hopsan without exporting it again, as long as
interface components are not changed or renamed.

5

December 5, 2019

External Component Libaries
If the model contains components from an external component library, i.e. components not included
in the default library, these will not automatically be exported. Hence, they need to manually added
to the exported code. It is here assumed that the code for each component in the external library is
contained in a single .hpp file.

1. Copy component files to export folder
Copy all external component header files (.hpp) to the "<exportpath>/componentLibraries/defaultLibrary"
folder.

2. Include component header files in exported code
Open "<exportpath>/componentLibraries/defaultLibrary/defaultComponentLibraryInternal.cpp".
Include your component header files directly after the inclusion of "Components.h":

include " defaultComponentLibraryInternal .h"

// Include automatically generated header code for all default ...
include " Components .h"

include " MyComp1 .hpp"
include " MyComp2 .hpp"

//! @defgroup Components Components
//!

3. Register components in source code
Add registration of your component(s) in the "Additional Components" section below.
void hopsan :: register_default_components (ComponentFactory * pComponentFactory)
{

// Include automatically generated registration code for all ...
include " Components .cci"

// ========== Additional Components ==========

// Here you can add your own components if you want to compile ...
// Use the following form :
// pComponentFactory -> registerCreatorFunction (" TYPENAME ", ...
//
// Example :
// pComponentFactory -> registerCreatorFunction (" HydraulicVolume ", ...

ComponentFactory -> registerCreatorFunction (" MyComp1 ",MyComp1 :: Creator);
ComponentFactory -> registerCreatorFunction (" MyComp2 ",MyComp2 :: Creator);

}

After these modifications the exported code can be compiled using the compilation script as described
above. The added components will now be available for use with the included model.

6

