December 5, 2019 B
v,
O HOPSAN

Tutorial - Advanced Usage

Introduction

This tutorial describes more advanced techniques for modeling and simulation with Hopsan. It is
recommended to first read the Getting Started tutorial, to get a better overview of the program. Start
with loading the model file called advanced_usage.hmf. All following sections assumes this file to be
open.

P> Load Model File (Ctrl-O)

1 System Parameters

In models with several identical components, it is very impractical to go through all components and
change the same parameters in all of them. Instead, it is desirable to only change the parameters for
all components in one place. This can be done by using system parameters. In the example models the
piston components are equal. We want to control the piston areas and the stroke as system parameters.

1. Open the system parameters widget
Open the system parameters widget by clicking on the icon in the toolbar:

X5 System Parameters (Ctrl-Shift-Y)

2. Add system parameters
An empty widget appears to the right. Now click on the Add button. In the dialog, create the
following parameters:

Name Value Type

A_l 0.001 double
A_2 0.001 double
s_| 1.0 double

3. Apply system parameters
Now double-click on the first cylinder to open the component properties dialog. To map a
parameter to a system parameter, change the value of the parameter to the name of the system
parameter. Change the values according to the figure below.

Name Alias Unit Description Value
InputVariables Default Value
a1 mn2 Piston Area 1 df Al X5
a2 mn2 Piston Area 2 d| A2 x5
s_| m Stroke d | s_| 5

It is also possible to choose parameters from a list, by clicking on the globe item to the right of
the parameter value. Now do the same thing for the other cylinder. Both cylinders will now use
the area and stroke parameters defined in the system parameters widget. If you like to, you can
try a few simulations and see that it works as expected.

December 5, 2019

LINKOPING
II.“ UNIVERSITY

2 Subsystems

Large model diagrams can be made simpler and less confusing by moving groups of components to
subsystems. A subsystem is practically a component consisting of a system of other components. We
will now make a subsystems of the two postion servos.

1. Add a subsystem component
Locate the Subsystem component in the library with the same name and add it to the model:

1HF

2. Select and cut components
Select the valve, piston, mass and tank component from the first position servo. Press Ctrl-X to
cut the components.

r

(&

3. Enter the subsystem and paste components
Double-click on the subsystem component to enter the system. Paste the cutted components by
pressing Ctrl-V.

4. Add container ports
Ports in subsystems are defined by container port components, located in the Subsystem library
folder. Add three container ports to the subsystem, and connect them to the three unconnected
ports:

December 5, 2019

LINKOPING
II.“ UNIVERSITY

5. Connect the subsystem to the model
Return to the top-level system by clicking on the button at the top left corner of the model. The
subsystem now has three ports, representing the container ports. Connect them to the model as
shown below:

------- OO ——

6. Add parameters to subsystem

Subsystems can have parameters, just like other components. These are created by adding
system parameters within the subsystem. Enter the subsystem by double-clicking on it and
open the system parameters widget. As you can see, the system parameters from the previous
section (A_1, A_2 and s_|) have been added automatically when pasting the components. Now
leave the subsystem and return to the top-level system again. Now right-click on the subsystem
component and click on Properties in the drop-down menu. Go to the System Parameters tab.
Here we can change the value of the subsystem parameters, which in turn will affect the piston
component. System parameters in the top-level system can be propagated down to the subsystem
by setting the value of each system parameter to the name of the top-level system parameter,
as in the figure below:

O Systermn Properties |_!Q %
| Settings | Appearance | Model Info |5\,f5tem Parameters
A AL & &
A (A2 e O
5 |_’5_I . L ‘:b

Everything will now work exactly as before we added the subsystem. If you want to, you can
redo the process and create a subsystem for the second postion servo as well.

December 5, 2019

LINKOPING
II." UNIVERSITY

3 Scripting

Most features in Hopsan can be accessed by writing commands in the terminal widget, located below
the workspace. It is also possible to automate repetitive processes by writing script files.

1. Getting help
linewidth Use the help command to display a list of all available commands:

>> help

To show documentation about a specific command, write help followed by the command:

>> help chpa
Change parameter value
Usage: chpa [parameter value]

2. Changing parameters
To change a parameters in the current model, you can use the chpa (change parameters) com-
mand. Try to change the oil density parameter in the first valve component. The component is
called "Valvel", the parameter name is "rho" and the variable is called "y". The full name of the
parameter is thus "Valvel.rho.y".

>> chpa Valvel.rho.y 900
Changed value for 1 parameters.

In many cases it is necessary to change several parameters at the same time. The oil density,
for example, should obviously be the same in both valve components. This can be done by
using wildcards, represented by the asterisk (*) symbol. Writing "*x" or example will modify all
parameters that ends with an "x". "*x*y" will modify all parameters that contains the letter "x"
and ends with the letter "y". Now change all parameters named "rho" by writing:

>> chpa *.rho.y 900
Changed value for 2 parameters.

3. Run a simulation
Once all parameters have been set, the simulation can be started by the "sim" command. Try
this now!

>> sim
[09:44:42] Info: In advanced_usage; Using single-threaded algorithm.
[09:44:42] Info: Simulated ’advanced_usage’ successfully! Initialization time: 4 ms, Simu

4. Plot results
When the simulation is finished, variables can be plotted with the "chpv" (change plot variable)
command. Now plot the system pressure. This can for example be found as the variable "p" in
port "P2" in the component named "Pump". The full variable name is thus "Pump.P2.p".

>> chpv Pump.P2.p

5. Writing a script file
Script files are useful for running several commands at the same time, and for reusing code. It
is also possible to use loops (such as "while") and conditional statements, like "if". We will now
create a script file and call it. First, check the present working directory of Hopsan with the
"pwd" command:

>> pwd
C:/Users/Username/Documents/Hopsan

December 5, 2019

LINKOPING
II." UNIVERSITY

It is possible to list the files in the folder with the "Is" command, and change directory with the
"cd" command. Now change to the "Scripts" directory.

>> 1s

Backup
Libraries
LogData
Models
Scripts

>> cd Scripts
C:/Users/Username/Documents/Hopsan/Scripts

Now use an external editor, for example Notepad in Windows, to create a script file in this folder.
We want to create a file that simulates the system five times with five different levels of system
pressure, and then plots all five results in one diagram. Write the following code, and save the
file as "tutorial.hcom".

tutorial.hcom

rmvar Pump.P2.p@x

pref.p.y=1e7

i=0

while(i<5)
sim
pref.p.y=pref.p.y+2e6
i=i+l

repeat

chpv Pump.P2.p@x*

The first command removes all previous generations of the pump pressure variable. The last two
characters ("@x") means "at all generations". Then we set the reference pressure parameter to
100 bar (1e7 Pa). We then loop five steps, and for each step we simulate the model and then
increase the pressure with 20 bar (2e6 Pa). We thus simulate the system for 100, 120, 140, 160
and 180 bar. After the loop we plot all generations of the system pressure. Now launch the
script by the "exec" command!

>> exec tutorial.hcom

If all goes well, the model shall be simulated five times and then a plot window with five curves
will appear.

	System Parameters
	Subsystems
	Scripting

