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Preface
This material is intended for students at an advance level with basic understanding in ystem
dynamics and fluid power. It is a work in progress. The intention is to provide an understanding of
system modelling and also the capability to create models at a detailed equation level.

This material is about system simulation using transmission line dynamics to obtain partitioned
models that can be used with local solvers, and can be used for parallel processing. Relaying on
local solvers also means that good scaling properties are obtained.
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1. Transmission Line Modelling

Simulation of fluid power systems are characterized by difficulties such as very strong non-
linearities, stiff differential equations and a high degree of complexity. Using conventional
integration techniques it is often necessary to use very small time steps in order to be able to
deal with numerically stiff problems, and strong non-linearities. A very suitable method for mod-
elling and simulation of large complex dynamic systems is represented by distributed modelling
using transmission line elements. The origin of this concept goes back at least to Auslander 1968
[1] who first introduced transmission lines (or bi-lateral delay lines). This method evolves naturally
for calculation of pressures when pipelines are modelled with distributed parameters. This approach
was adopted for simulation of fluid power systems with long lines in the HYTRAN program
already in the seventies. A related method is the transmission line modelling method (TLM), or
transmission line matrix method, presented by Johns and O’Brien [7] for simulation of electrical
networks. Bi-directional delay lines was introduced in the Hopsan simulation package in [13]
where it was also introduced for parallel simulation of systems. Since then it has also been used for
real time simulation [11]. Multi thread simulation was introduced in [3].

Figure 1.1: Transmission Line with Time delay T.

The hydraulic transmission line is an object with a complex dynamic behaviour. This behaviour
can be investigated by solving the Navier Stokes equations for one dimensional unsteady flow. This
is done e.g. in D’Souza and Oldenburger [15], and also in Ham [6] and Viersma [16]. However, for
the case of flow without friction a much simpler approach can be made. In many hydraulic systems
this is negligible and the line may be accurately described by its capacitance and a time delay for
all signals passing through the line. The following list of properties is sufficient to describe such a
line and to uniquely define a set of equations that can model the line.
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• There is a time delay T for all information propagating through the line. (Flow speed is very
small compared to the speed of sound in the line).

• Symmetry.
• Flows entering the line will produce an increase in pressure in steady state.
• Linear dynamics.

The first and second property yields

p1(t) = f (q1(t),q2(t−T ), p2(t−T )) (1.1)

p2(t) = f (q2(t),q1(t−T ), p1(t−T )) (1.2)

The third and fourth property yields

p1(t) = Zcq1(t)+Zcq2(t−T )+ p2(t−T ) (1.3)

p2(t) = Zcq2(t)+Zcq1(t−T )+ p1(t−T ) (1.4)

If we assume a steady state initial condition where q1 =−q2, this also implies that p2 = p1, and
subject the line to a sudden change in q1, using eq (1.3) the corresponding pressure change can be
calculated as

p1(t)− p1(t−T ) = Zc[q1(t)−q1(t−T )] (1.5)

or

∆p1(t) = Zc∆q1(t) (1.6)

Equation (1.6) is called Joukowski’s equation and describes a phenomenon called "water hammer".
If a valve is suddenly closed this will cause a pressure transient in the pipe up-streams from the
valve. "Water hammer" can also cause severe pressure transients in return lines i.e when a valve is
suddenly opened to release flow to a the return line.

In order to collect all information that propagates from one end of a line to the other, the
variables c1,c2 are introduced as

c1(t) = Zcq2(t−T )+ p2(t−T ) (1.7)

c2(t) = Zcq1(t−T )+ p1(t−T ) (1.8)

c1,c2 are called the characteristics and they represents the waves traveling in each direction through
the line.

In this way (1.3) and (1.4) can be rewritten as

p1(t) = Zcq1(t)+ c1(t) (1.9)

p2(t) = Zcq2(t)+ c2(t) (1.10)

The boundary condition at the ends of the line are described by adjacent components.
The flow is typically a function of the pressure.

qi(t) = f (pi(t)) (1.11)

Eq (1.9) and equation (1.11) produce the following set of equations that are to be solved at each
end of the line.

qi(t) = f (pi(t)) (1.12)

pi(t) = Zcqi(t)+ ci(t) (1.13)
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Figure 1.2: Block diagram of a lossless transmission line.

Using these equations together with equations (1.8) and (1.7) the block diagram in Fig 1.2 can
be made.

The boundary blocks depends of course on the boundary condition at each end of the line. For
the case of blocked end we have that qi(t) = 0. Equation (1.13) then yields

pi(t) = ci(t) (1.14)

For the case of an open end pi(t) = p0, where p0 is a constant pressure. Equation (1.13) then
yields

p0 = Zcqi(t)+ ci(t) (1.15)

Rearranging

qi(t) = (p0− ci(t))/Zc (1.16)

If we have a line with prescribed inlet flow and an open outlet (prescribed outlet pressure) as in
Fig. 1.3 the block diagram for this system can be obtained by using (1.16) and (1.13) together with
Fig. 1.2 to form the block diagram in Fig. 1.4.

Figure 1.3: Transmission line with prescribed inlet flow and prescribed outlet pressure (open outlet)

Figure 1.4: Block diagram of a transmission line with prescribed inlet flow and prescribed outlet
pressure (open outlet).

Using the equations (1.7), (1.8), (1.9) and (1.13) the following explicit scheme is obtained:
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c1(t) = Zcq2(t−T )+ p2(t−T ) (1.17)

c2(t) = Zcq1(t−T )+ p1(t−T ) (1.18)

p1(t) = Zcq1(t)+ c1(t) (1.19)

q2(t) = (p0− c2(t))/Zc (1.20)

Alternatively the equations can also be written as

c1(t) = 2Zcq2(t−T )+ c2(t−T ) (1.21)

c2(t) = 2Zcq1(t−T )+ c1(t−T ) (1.22)

p1(t) = Zcq1(t)+ c1(t) (1.23)

q2(t) = (p0− c2(t))/Zc (1.24)

This has the advantage that the interface becomes simpler since the pressure need not be transfered
to the transmission line.

1.0.1 Hydraulic Capacitance
The existence of capacitance in the line is actually a consequence of the third initial assumption.
That is, flows entering a line will produce an increase in pressure in steady state. The bulk modulus
β of the oil is defined as:

β =−V
d p
dV

(1.25)

where V is the oil volume
The hydraulic capacitance is defined as

d p
dt

=
q
C

(1.26)

but q =−dV
dt which yields

d p
dt

=− 1
C

dV
dt

(1.27)

Inverting (1.25) and multiplying both sides with d p
dt yields

1
β

d p
dt

=− 1
V

dV
dt

(1.28)

Rearranging yields

d p
dt

=−β

V
dV
dt

(1.29)

Identification yields the capacitance C as

C =
V
β

=
Al
β

(1.30)

The next step is to find out how this relates to the parameters T and Zc of the line. If we have a
line with a blocked outlet q2 = 0. Equation (1.10) shifted one time step in (1.9) yields

p1(t) = p1(t−2T )+Zc[q1(t)+q1(t−2T )] (1.31)
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Rearranging gives

p1(t)− p1(t−2T )
2T

=
Zc

2T
[q1(t)+q1(t−2T )] (1.32)

For slow variations in p and q this can be written as

d p1(t)
dt

=
Zc

T
q1(t) (1.33)

Identification with (1.27) yields

C = T/Zc (1.34)

It is interesting to note the similarity between (1.31) and the trapezoidal rule for integration

y(t) = y(t−h)+
1
h
[y′(t)+ y′(t−h)] (1.35)

They are identical if the time step h is replaced with 2T in the line. This means that if the trapezoidal
rule is used for integrating pressure in a volume, this corresponds to the "exact" dynamics of a
blocked lossless transmission line.

1.0.2 Hydraulic Inductance
Due to the inertia of the fluid, the hydraulic line will have some inductance. Newtons second law
gives

F = m
d2x
dt2 (1.36)

The hydraulic inductance L is defined as

∆p = L
dq
dt

(1.37)

The mass of the fluid in the line can be written as

m = Alρ (1.38)

Here A is the area of the cross section of the line, l is the length and ρ the density of the fluid.
Furthermore

F = A∆p (1.39)

and

dq
dt

= A
d2x
dt2 (1.40)

This yields

∆p =
lρ
A

dq
dt

(1.41)

Identification yields

L =
lρ
A

(1.42)
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The next step is to find out how this relates to the parameters T and Zc of the line.
Subtracting equation (1.4) from (1.3) yields

p1(t)− p2(t)+ p1(t−T )− p2(t−T ) = Zc[q1(t)−q1(t−T )− (q2(t)−q2(t−T ))] (1.43)

Assuming a quasi steady state situation where p1 and p2 are constant and q1 =−q2 = q equation
(1.43) can be rewritten as:

2(p1− p2) = 2Zc[q(t)−q(t−T )] (1.44)

near linear variations in q, ∆p = p1− p2 and dividing with 2T yields

∆p
T

= Zc
∆q(t)

dt
(1.45)

For sufficiently small T this can be written as:

d p
dt

= Zc
dq(t)

dt
(1.46)

Identification with (1.37) yields

L = ZcT (1.47)

Combining (??) and (1.47) the time delay T can be calculated.

L
T

=
T
C

(1.48)

This yields T as

T =
√

LC (1.49)

Equation (1.49) in (1.47) yields

Zc =

√
L
C

(1.50)

1.1 The Unit Transmission Line Element
When TLM is used as a technique for connecting components and subsystems as a general
method the basic dynamic element is the unit transmission line. This is the case in the HOPSAN
package where this is used to connect different components to each other. In the general case a unit
transmission line element can be used to model both capacitances and inductances. In the HOPSAN-
package, however, it is used mainly to represent capacitances (oil volumes and mechanical springs)
except in electrical systems where it can be used also to represent inductances. In contras to a
general transmission line with an arbitrary delay time T , this is for the unit transmission line set to
be equal to the time step h in the simulation, so that T = h. Here Zc is the characteristic impedance
of the line, p and q are pressures and flows respectively. Note that the main property of these
equations is the time delay they introduce in the communication between the ends. The incident
and reflective waves can also be viewed as an alternative set of variables. They represents the
coordinate axes rotated 45 degrees relative a coordinate system based on p and Zcq.
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Figure 1.5: Block diagram of the unit transmission line element.

Figure 1.6: Relationship between the wave variables and flow and pressure.

Another interesting observation is found if p2 in eq (1.3) is substituted with eq (1.4) (shifted T)
and the outlet in 2 is blocked (q2 = 0)

p1(t +T ) = p1(t−T )+Zc[q1(t +T )+q1(t−T )] (1.51)

If this equation is compared to the trapezoidal method for integration eq (1.52)

yn+1 = yn +
h
2
(F(yn+1, tn+1)+F(yn, tn)) (1.52)

we see that they are the same if T = h/2
The implication of this is that if we use the trapezoidal method to integrate pressure in a volume

(capacitance) between two components, this corresponds to introducing a short pipe instead of a
pure capacitance see

Component 1 Component 2

l = ha/2

Figure 1.7: Modelling of capacitance using the trapezoidal method

If, however the volume is modelled as pipe to begin with this can be oriented so that it isolates
the two components from each other and thereby isolate them numerically from each other since
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Component 1 Component 2
l = ha

Figure 1.8: Modelling of capacitance using UTL-element.

there is a physically motivated time delay between the components. In order to represent a pure
capacitance C with an UTL-element the length of the element will correspond to ha where h is the
time step and a is the speed of sound in the fluid. The characteristic impedance is simply set to
Zc = h/C. For a more detailed discussion on the UTL-element as an integrator see ref [12] where
also elements with more than two nodes are described. Introducing the characteristics c1 and c2 as:

c2(t) = p1(t)+Zcq1(t) (1.53)

c1(t) = p2(t)+Zcq2(t) (1.54)

Inserted in 1.3 and 1.4 yields

p1(t +T ) = c1(t)+Zcq1(t +T ) (1.55)

p2(t +T ) = c2(t)+Zcq2(t +T ) (1.56)

where c1 and c2 contain all information of the opposite node necessary for the calculation of
pressure and flow at one node. At each component between the lines, we then have to solve the
following system of equations.

q = q(p) (1.57)

p = c+Zcq (1.58)

Here, q is a vector with all the flows in all the nodes connected to the component, p is the corre-
sponding pressures, c the characteristics and finally Zc is a diagonal matrix with the characteristic
impedances in the diagonal. Limitation of the pressure due to cavitation is handled by the compo-
nent. Compared with conventional modelling, where only eq (1.57) would be present (the pressures
are then integrated in the adjacent volumes), an extra set of equations (1.58) has been added. These
equations are, however, very simple and always the same.

Eqn (1.55) and (1.56) can also be used in (1.53) and (1.54) (shifted one time step)

c2(t) = c1(t−T )+2Zcq1(t) (1.59)

c1(t) = c2(t−T )+2Zcq2(t) (1.60)

An advantage with these expressions is that the wave variables are not manipulated by the compo-
nent, and are consequently not affected by cavitation. As a result, the void is tracked and pressure
cannot go above zero unless the void is replaced, which is a reasonable representation of what
really is happening.

1.1.1 Volume with several connections
A very useful element is a joint of several transmission lines that can be used to represent a volume
with an arbitrary number of connections. In this way it is possible to represent a pipeline system
with a lumped capacitance, which is often a sufficiently accurate approximation. Note that each
line element only has a delay of T/2. This is sufficient since there will always be a full time step
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between two nodes. The characteristics from each node can be expressed as a function of old
characteristics and flows.

ci(t) =
2
N

N

∑
j=1

c j(t−T )+2Zcq j(t−T )− ci(t−T )−2Zcqi(t−T ) (1.61)

Alternatively, and more economical is to implement it as:

cT (t) =
2
N

N

∑
j=1

c j(t−T )+2Zcq j(t−T ) (1.62)

ci(t) = cT (t)− ci(t−T )−2Zcqi(t−T ) (1.63)

Here the total volume has to be distributed to all the involved line elements. The characteristic
impedance can therefore be calculated as:

Zc =
hN
2C

(1.64)

Modelling of mechanical springs is performed in exactly the same way as the volume, since they
also represent pure capacitances. The only difference is that it uses speed, instead of flow, and
force, instead of pressure.

1.1.2 The transmission line as an integrator
In order to compare the transmission line with a true integration and the trapezoidal rule it is useful
to draw the Bode- diagram of the Laplace transformed expressions. This is obtained by Laplace
transforming (33). Using:

L (x(nT + t)) = XensT (1.65)

The transmission line equation can be written:

P1esT = Zc
(
Q1e−sT +Q1esT )+P1e−sT (1.66)

Solving for P1 and shifting the equation forward T yields:

P1 =
Q1Zc

(
e2sT +1

)
e2sT −1

(1.67)

The transfer function G is defined as:

Gline =
P1

Q1Zc
=

1+ e−2sT

1− e−2sT =
e2sT +1

e−2sT −1
(1.68)

In the same way the transfer function for the trapezoidal rule is obtained as

Gtrapez =
Y
F

=
ehs +1

2(ehs−1)
(1.69)

The exact solution is of course

Gexact =
1
s

(1.70)

Plotting the transfer functions (with s = iω) for trapez, the transmission line with T = h and the
exact solution yields up to ω = 2π

T .
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Figure 1.9

In the figure above the different transfer functions are shown. The frequency is non-dimensional
such that it is normalized with respect to T . Since the transmission line transfer function is the
same as that of the trapezoidal rule, but with half the frequency, the first resonant peak is visible in
the spectrum. This resonance can give rise to oscillations during abrupt transients. Therefore, it is
advantageous to introduce some damping in the transmission line in order to avoid high frequency
oscillations at a frequency corresponding to 1/(2T ) when both ends are closed. (In some way this
oscillations can be regarded as heat, that in real systems can travel up into frequencies but here is
captured at 1/(2T )).

This can be implemented by introducing a slight filtering of the wave variables the characteristics
[12]. Introducing the filtered wave variables as:

c f 1(t) = αc f 1(t−h)+(1−α)c1(t) (1.71)

c f 2(t) = αc f 2(t−h)+(1−α)c2(t) (1.72)

Care must, however, be taken not to introduce to much, since that would introduce dissipation
in the system that might cause unwanted damping in the system behaviour, that would be an artefact
from the solver.

The total set of equations for the transmission line element with filtering and Laplace tranformed
then becomes:

p1(t) = c f 1(t)+Zcq1(t) (1.73)

p2(t) = c2 f (t)+Zcq2(t) (1.74)

c1(t) = p2(t−h)+Zcq2(t−h) (1.75)

c2(t) = p1(t−h)+Zcq1(t−h) (1.76)

c f 1(t) = αc f 1(t−h)+(1−α)c1(t) (1.77)

c f 2(t) = αc f 2(t−h)+(1−α)c2(t) (1.78)
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Laplace tranformation yields:

P1 =C f 1 +ZcQ1 (1.79)

P2 =C2 f +ZcQ2 (1.80)

C1 = (P2 +ZCQ2)e−sh (1.81)

C2 = (P1 +ZCQ1)e−sh (1.82)

C f 1 = αC f 1e−sh +(1−α)C1 (1.83)

C f 2 = αC f 2e−sh +(1−α)C2 (1.84)

With a blocked outlet (Q2 = 0) and introducing the filter function G f (s) as:

C f i = G f (s)C f i (1.85)

Hence

G f (s) =
α

1− (1−α)e−sh (1.86)

This yelds the set of equations of the transmission line as an integrator as:

P1 =C f 1 +ZcQ1 (1.87)

P2 =C2 f (1.88)

C1 = P2e−sh (1.89)

C2 = (P1 +ZCQ1)e−sh (1.90)

C f 1 = G f (s)C1 (1.91)

C f 2 = G f (s)C2 (1.92)

Solving for P1 as a function of Q1 yields:

Gline =
P1

ZcQ1
=

1+G f (s)e−2sh

1−G f (s)e−2sh (1.93)

However, the filtering has some effect on the asymptotic behavior and in order to compensate for
that a factor 1/(1−α) has to be introduced:

Gline =
1

(1−α)

1+G f (s)e−2sh

1−G f (s)e−2sh (1.94)

The bode diagram Gline for this for α = 0 and α = 0.2 is plotted in Fig. 1.10 If the transmission
line is to represent a capaciatance e.g. if the transmission line is to represent a hydraulic volume or
electric capacitance. Zc should be selected using Eq. 1.34, and with T = h, as:

Zc = h/C (1.95)

However, with the correction factor for α it becomes

Zc =
h

(1−α)C
(1.96)

In addition there is also a parasitic unwanted inductance that becomes a modelling error. This is a
function of time step

Lparasitic = Zch =
h2

(1−α)C
(1.97)

Note, that although this will introduce a numerical error, it will behave as a modelling error, which
is more benign since conservation laws are upheld.
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Figure 1.10: Bode diagram of the filtered transmission line element with α = 0 and α = 0.2.

1.1.3 Laminar Restrictor Connected to a Transmission Line

In this section we will look at the interaction between a transmission line and a laminar restrictor.
This is an important special case since many components in some ways acts as restrictors e.g. valves,
or at least have some part of their behavior described as resistive, e.g. the leakage in pumps, motors
and pistons. It is therefore a case that can describe important aspects of the dynamic interaction
between components and transmission lines.

q1 q2

p1 p2

Kcv

Figure 1.11: Laminar restrictor

The flow through the restrictor can be calculated as

q2 = Kcv(p1− p2) (1.98)

Kcv is the flow-pressure coefficient of the restrictor. It is also possible to use the hydraulic
resistance R instead. This is the inverse of the flow-pressure coefficient so that

Rv = 1/Kcv (1.99)

In modelling hydraulic component the flow-pressure coefficient is usually preferred to the
resistance since it can handle the extremes better. A closed valve for instance has Kc = 0. R on the
other hand becomes infinite. We will, however, use R here since it has the same dimension as the
characteristic impedance Zc.

Equation (1.98) can then be rewritten as

q2 = (p1− p2)/Rv (1.100)

When the restrictor is connected to transmission lines the following equations are solved for
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the restrictor.

q2 = (p1− p2)/Rv (1.101)

q1 =−q2 (1.102)

p1 = c1 +Zc1q1 (1.103)

p2 = c2 +Zc2q2 (1.104)

The pressure difference can thus be calculated as

p1− p2 = c1− c2− (Zc1 +Zc2)q2 (1.105)

The solution for q2 is then

q2 =
c1− c2

Rv +Zc1 +Zc2
(1.106)

Note the similarity between equation (1.100) and (1.106). The only difference is that the
pressures has been substituted with the characteristicsand that the characteristic impedances has
been added to the resistance.

The equations used in the component will thus be

q2 =
c1− c2

Rv +Zc1 +Zc2
(1.107)

q1 =−q2 (1.108)

p1 = c1 +Zc1q1 (1.109)

p2 = c2 +Zc2q2 (1.110)

The corresponding block diagram can be seen in Fig. 1.12

Figure 1.12: Block diagram of laminar restrictor.

The restrictor can then be connected to the line and a prescribed pressure as indicated in Fig
1.13 and the block diagram in Fig 1.14

q1

p2

q2

p1 p3

q3
Rv

restrictor

Figure 1.13

In this way it is possible to assemble components and simulate the system. Note that there is a
direct mapping between components and equations. This is a very important property for handling
the complexity of large scale system simulation.
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Figure 1.14: Transmission line connected to a laminar restrictor and a prescribed pressure compo-
nent.

1.2 The Structure of the Simulation Model

Modelling of systems is essentially how to connect the different components so that they will
interact in a proper way. The terminology used here, is related to the Hopsan software, although it
is to a varying degree also applicable also to other simulation software.

1.2.1 The bi-directional delay graph
The bi-directional delay graph is a special case of symmetric directed graphs, see e.g. [2]. Symmet-
ric directed graphs are network where connectors between nodes are bi-directional as in Fig.1.15.

For simulation of systems the equations have to sorted for execution in each time step. This can
lead to algebraic loops that cannot be resolved unless a time delay is introduced. This can lead to
numerical instability if not implemented appropriately. Alternatively all equations from all system
components are assembled into one system of equation that can then be solved. One way to avoid
ad-hoc loop-breaking is to introduce time delays between some components. Here the components
are divided into two types (C-type and Q-type) that are connected with bi-directional ports. When it
comes to node connections there are two types of components. Those that are of a capacitive nature,
where intensity variables are calculated, are called C-type components, and those that calculates
flow variables such as flow and pressure or speed and force. These are called Q-type components.

The connections going from Q-type to C-type are associated with a time delay as in Fig. 1.16.
This means that sorting for execution becomes trivial. For each step all C-type component are first
executed (can be executed in parallel) and then all Q-type components (also possibly in parallel),
Fig. 1.16. In this way all C-type and all Q-type components can be executed in parallel respectively.
A modelling technique that allows for this is transmission line modelling (TLM), [1], [8], [13].
Here physically motivated time delays are introduced since wave-propagation is modelled in the
C-components, between Q-components.

Figure 1.15: Symmetric directional graph.

During the simulation it is suitable to have all C-type components in one section and the Q-type
components in another section. Since all communication between Q-type components will go
through the C-type components there will be no communication between Q-type components in one
time step. Consequently there are no restriction of the ordering of Q-type components, except for
the case of a feedback controller. In a position servo the load position will be feed back to the servo
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Figure 1.16: Bi-directional delay graph.

Figure 1.17: Rearranged Bi-directional delay graph. This can be executed explicitly every time
step without iteration or algebraic manipulation

valve without any time delay. This aspect makes it recommendable to place the Q-type components
that represents control elements such as valves last in the section of Q-type components.

When simulating systems the evaluation of the system is performed in two steps:
• The first step in the simulation loop is to calculate the variables from all C-type components

(capacitive elements), such as volumes, springs and electric capacitances.
• The flows variables from the Q-type components can then be calculated. Step one is then

repeated for the next time step.
Note, however, that a Q-type component may represent a system with an internal C-type

(capacitive) component. This does not matter as long as all the external connecting nodes for the
component are of the same type, ie calculates flows and pressure.





2. Differential Algebraic Equations

The most general representation of dynamic system is to represent it as a differential algebraic
system. This means that the system is a combination of differential equations and algebraic
equations.

The use of transmission line elements between components means that each component can be
regarded as a separate unit that is numerically insulated from the rest of the system. It can therefore
be solved independently from the rest of the system for each time step and can be modelled in any
way that is convenient. This means that the components/sub systems can be models that are set up
in a conventional way as conventional lumped parameter model. At each component between the
lines the equation system 2.2 has to be solved.

f =
(

fa (x, ẋ, ẍ . . . ,q, t)
fb(p,c,q)

)
= 0 (2.1)

HereFb(y) is the equations representing the boundary conditions. In general they can be written as

fb(q) = p− c−Zcq (2.2)

where c, p, and q are vectors containing the states of the adjacent nodes. Zc is a diagonal matrix
containing the characteristic impedances. Introducing the state vector y as a combination of x and
the boundary variables p, c and q the equation system can be written as:

A general approach to represent a system is to represent it as a differential algebraic system.
This also allows for algebraic loops. The simulation language Modelica is a language that is based
on this form. In the general case the following system is considered.

f(x, ẋ, t) = 0 (2.3)

However, (2.3) implies that the system essentially has to be written in state space form,
something that may be considered as too limited. Many relationships are usually given in transfer
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function form, which makes it more natural to allow for higher derivatives. The system can then
instead be expressed as:

f(y, ẏ, ÿ . . . , t) = 0 (2.4)

This also has the advantage that the variable vector is reduced, since y is shorter than x, y
contains a subset of the states in x. It should, however, be pointed out that it is only possible to
impose strong non-linearities (such as limitations on the state variables) represented in the y vector.
Also all variables that are of any interest must be included in the y vector otherwise they will not be
computed explicitly. Finally high order differentials should be avoided since the equations becomes
numerically ill conditioned if the word length is limited. In order to solve the dynamic part of the
system in a numerically stable way, the trapezoidal rule can be used. Using the trapezoidal rule the
time differential is solved as

y(t +h) = y(t)+
1
2

h(ẏ(t)+ ẏ(h+ t)) (2.5)

This is used in in-line integration when this is introduced as an additional equations for each state
to be integrated. An alternative way is to use the trapezoidal rule is to reformulate it in the form
known as the bilinear transform.

d
dt

=
2
(
1−q−1

)
h(1+q−1)

(2.6)

where q in this context represents the time displacement operator such that:

qy = y(t +h) (2.7)

Using the bilinear transform in (2.6) means that 2.4 can be rewritten as a function g of y(t) and old
states y(t−nh).

g(y(t),y(t−h), . . . ,y(t−nh),u(t),u(t−h), . . . ,u(t−nh), t) = 0 (2.8)

When solving the system all the old values y(t−h) . . .y(t−nh) can be regarded as constants since
they have already been established in previous time steps. Likewise the input vector is also known.
Equation 2.8 is therefore rewritten as:

G(y(t), t) = 0 (2.9)

In order to solve this system of equations in a numerically stable way, the Jacobian matrix is needed,
which is defined as:

Jijk =
∂Gi(yk(t))

∂yj
(2.10)

The equation can then be solved numerically using Newton-Raphson iteration.

yk+1 = yk(t)−Jk(t)−1G(yk(t)) (2.11)

Since an iterative procedure is used, there is a potential for performance loss due to the number of
iterations needed to solve the system. However, the values from the previous time step can be used
as start values.

y0(t) = y(t−h)
J0(t) = J(t−h)

(2.12)
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Equation (2.11) can then be used to solve this system in each time step. If the system is linear, the
system can be solved in only one iteration, and it is usually sufficient with only one iteration even
for non-linear systems, especially if a small time step is used. There are, however, situations when
input signals changes suddenly, e.g. a valve is changed step wise during one time step, that requires
more than one iteration. In practice, however, it has been found that two iterations increase the
tolerance against non-linearities dramatically, while a further increase to three iteration gives only
minor improvement. Two iterations have therefore been found to be something near to an optimum
for almost all situations.

Although it is possible to use (2.11) directly it is wise to replace the inverse of the Jacobian by
using LU-decomposition instead. There are also a few other actions that can be done in order to
further enhance the efficiency of the solver. In general, however, the effort to solve the system, i.e.
use solver that utilize sparsity in the Jacobian, since the evaluation time increases more than linear
with the system size. However, using transmission line elements to partition a model, subsystems
need not be to large.

Provided the system is reasonably linear (slow variation of J, (2.11)) is an A(α)-stable method
[4]. However, in reality, rather large variations of J can be tolerated. Even pure discontinuities can
also be handled satisfactory using the above approach, when fixed-time step is used (as in real-time
simulation).

In a normal case the iteration quickly finds the right solution as in Fig. 2.1. Note tat for the one
dimensional case Newton-Raphson can be written as:

yk+1 = yk−
g(y)

(g′(y))
(2.13)

Figure 2.1: Convergence of Newton-Raphson iteration

There are , however, situations where even the Newton-Raphson method fails to converge. In
Fig. 2.2 another scenario is shown. Here the non-linearity drives the method to diverge.

Figure 2.3 shows a scheme of the transformations involved to create an executable model. This
was presented in [9]. The differential algebraic system DAE is transformed into time discrete
form using bilinear transform. In Elmqvist et al [5] the concept of in-line integration is introduced,
where extra equations are introduced to perform the integration. The scheme here is related but
would be more appropriately called in-line transformation, and in-line integration can be viewed as
a special case of that. The Jacobian J is obtained by symbolic partial differentiation of the time
discrete system G. G and the Jacobian J are used to solve the system in each time step using the
Newton-Raphson method for solving the system in each time step.

In order to deal with this overshot it is possible to introduce the term α . If it is less than one the
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Figure 2.2: Newton-Raphson failing to converge.

Figure 2.3: Scheme of transformations to generate a model including a solver using bilinear
transformation and Newton-Raphson

convergence is slowed done but the chances of convergence increase.

yk+1 = yk(t)−αJk(t)−1G(yk(t)) (2.14)

� Example 2.1 Solving the laminar orifice as an algebraic system
In a previous section the simple laminar orifice was used as an example. Here it is shown how it
would be solved using the more generic differential algebraic solver.

The equations are:

q2 = (p1− p2)/Rv (2.15)

q1 =−q2 (2.16)

p1 = c1 +Zc1q1 (2.17)

p2 = c2 +Zc2q2 (2.18)

Using the more general approach using Newton-Raphson. The system equations F and G would be
(there is now dynamics):

G = F =


p1 (−Kc)+ p2Kc +q2

q1 +q2
−c1−q1Zc1 + p1
−c2−q2Zc2 + p2

 (2.19)
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The equation of independent variables would be

y =


q1
q2
p1
p2

 (2.20)

The Jacobian would then be

J =


0 1 −Kc Kc

1 1 0 0
−Zc1 0 1 0

0 Zc2 0 1

 (2.21)

Using this approach would be marginally more computationally demanding than an analytical
solution, since it is enough to use two iteration per time step. On the other hand it is using a
completely general approach. �

� Example 2.2 Mechanical Inertia
This system of equations can be written as:

F = 0 (2.22)

where

F =



Mv̇2 +Bv2− (F1−F2)
ẋ2− v2
v1− v2
x1 + x2

F1− (cx,1 + v1Zcx,1)
F2− (cx,2 + v2Zcx,2)

 (2.23)

�

2.1 Event Free Modelling through functional programming
In real time simulation it is not practical to handle events by finding zero-crossings and restart solvers
when e.g. limitations in variables are hit. Therefore other mechanisms needs to be used. Using the
approach with differential algebraic equations that are solved through bilinear transformation and
Newton-Raphson using an analytical Jacobian, it might seem that the Jacobian would be extremely
difficult to derive, since most manually written models involves a great deal of conditions and jumps
as they are written in a procedural style. This was shown in [10]. The introduction of an automated
approach means, that a functional programming style is imposed (the function to represent the
derivative of a function can always be defined although it may not always be an exact representation,
e.g. in singular points). Therefore all conditions have to be represented by functions. The algorithm

if(cond)then

a = a1

b = b1

c = c1

else

a = a2

b = b2

c = c2

end if
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can be transformed into

a = if(cond,a1,a2)
b = if(cond,b1,b2)
c = if(cond,c1,c2)

(2.24)

Since the If function is a piecewise continuous function the differential can be defined and can
be used in the Jacobian. An advantage with this style of programming is that the variables a, b,
and c in the example are forced to be defined for both cases, and cannot be forgotten as in normal
procedural programming. This approach does not remove the events as such but there is no notion
of events in the code since everything is hidden in the functions. The derivatives of the if function
are:

∂

∂y1
if(cond,y1,y2) = if(cond,1,0)

∂

∂y2
if(cond,y1,y2) = if(cond,0,1)

(2.25)

Another function that has proven very useful is the Limit(x,xmin,xmax) function.

Limit(x,xmin,xmax) = x : x ∈ [xmin,xmax]
Limit(x,xmin,xmax) = 0 : x /∈ [xmin,xmin]

(2.26)

The derivative of this function is defined as

d
dx Limit(x,xmin,xmax) = 1 : x ∈ [xmin,xmax]
d
dx Limit(x,xmin,xmax) = 0 : x /∈ [xmin,xmax]

(2.27)

Another function that can be usefull is the "önPositive"f̈unction. For this function we have:

onPositive(x) = 1 : x ∈ [0,∞[
onPositive(x) = 0 : x /∈ [0,∞[
d
dx onPositive(x) = 0

(2.28)

The exact expression of the derivative of onPositive would have an infinite spike at precisely zero,
this is not practical to use in any implementation, and this is therefore omitted.

Min and max functions
Discontiunities can pose numerical problems (although not always) but if possible it is advisable
to replace them with a contunous functions that blend the two functions together. In many cases
the real function does not even have a sharp discontinuity and there should be a smooth blending
between the two functions. If a function is defined in one region by a function fa(x) and in another
by fb(x) and the function is the largest of these values. I.e.

f (x) = max( fa(x), fb(x)) (2.29)

we can use:

f (x) = ( f κ
a + f κ

b )
1/κ (2.30)

With a high value of κ the largest value quickly becomes very dominant. If

fa(x) = x (2.31)

and

fb(x) = 1 (2.32)
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Figure 2.4: Function that takes the maximum of two functions with a smooth transition, for κ = 2,
κ = 4 and κ = 6.

The correponding plots is shown in Fig. 2.4: As can be seen from the plots a typical value for κ

could be 4. If a function closer to the exact max-function is wanted a higher value it is just a matter
of increasing κ .

In a similar way an approximation to the a min-function can be defined.

f (x) = min( fa(x), fb(x)) (2.33)

Here the problem is first made into the max-function by inverting the functions and than inverting
again after the summation. 2.33.

f (x) =
1(

1
fa(x)κ

+ 1
fb(x)κ

)1/κ
(2.34)

where n is an exponent that for a very large value makes the transition sharp. To avoid singularities
if any of the functions are zero it can be rewritten as:

f (x) =
fa(x) fb(x)

( fa(x)+ fb(x)κ)1/κ
(2.35)

The mixed function would then be:

f (x) =
1

(1
x

κ
+1)1/κ

(2.36)

The function is plotted in Fig. 2.5 for the values of κ = 2,4, and 6 along with fa and fb.
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Figure 2.5: Function that takes the minimum of two functions with a smooth transition, for κ = 2,
κ = 4 and κ = 6.
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The logistic function
A general way of blending two functions is to used the logistic function. This can be written as

flogistic(x) =
1

1+ e
2(x−x0)

xw

(2.37)

The result for x0 = 0 and xw = 1 is shown in Fig. 2.6.

Figure 2.6: The logistic function

To blend two functions at an arbitrary point we can use the logistic function in the following
way:

f (x) = fL(x) fa(x)+(1− fL(x)) fb(x) (2.38)

Using the same functions as before and with xw = 0.1 and x0 = 1.5 the result in Fig 2.7. is obtained.

Figure 2.7
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The signed square root function
A function that is very usefull in particularly in fluid power system is the SigSqr function. This is
usefull to represent flow in sharp edged orifices.

SigSqrx = (sign(x))
√
|x| (2.39)

Its derivative is

SigSqr′(x) =
1

2
√
|x|

(2.40)

In order to avoid division with zero a small linear region is introduced. This can also be physically
motivated as there is always a small linear region even in sharp orifices. It is therefore denoted
SigsqrL.

SigSqrL(x,x0) = sign(x)

(
|x|κ

|x|κ/2 + xκ
0

)
1/κ (2.41)

This function is shown in Fig. for the values x0 = 0.3 and κ = 4

Figure 2.8: The modified signed square root function that can be used to represent the flow in an
orifice with sharp edges.

� Example 2.3 Hydraulic Pressure Releif Valve
A very common element in hydraulic systems is a pressure relief valve. It is a rather simple
component, yet it contains several difficulties from a modelling point of view. It includes a sharp
edged orifice and also discontinuities in the form of limitations on the stroke of the valve spool.

The equation describing this component are:

F =



mvder(vv)+bvvv + kexv−Av(ps− pt − pre f )
mvder(der(xv))+bvder(xv)+ kexv−Av(ps− pt − pre f )

CqwxvSigSqr( 2
ρ
(ps− pt))−qt

qs−qt

ps− (cs + zcsqs)
pt − (ct + zctqt)

 (2.42)
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Figure 2.9: Pressure relief valve.

Here

w = 2πdv (2.43)

der() is the time differential operator. Bilinear transform yields:

G =



−Avh2 p1 +Avh2 p2 +Avh2 pre f +(4Mv +2Bvh+h2ke)xv+
+DS(−2Avh2 p1+2Avh2 p2 +2Avh2 pre f +2h2ke−8Mv),1)+
+DS(−Avh2 p1 +Avh2 p2 +Avh2 pre f+
+4Mvxv−2Bvhxv +h2kexv,2)

Bvvvh+2vvMv−Avhp1 +Avhp2 +Avhpre f +hkexv+
+DS(Bvvvh−2vvMv−Avhp1 +Avhp2 +Avhpre f +hkexv,1)

CqwxvSigSqr( 2
ρ
(ps− pt))−qt

qs−qt

ps− (cs + zcsqs)
pt − (ct + zctqt)


(2.44)

The vector of independent variables for the system of equations is:

y = (xv,vv,qt ,qs, ps, pt)
T (2.45)

There are limits on xv that also influence xv. These limitations are introduced after the bilinear
transformation of (26). It means limiting the value of and to make sure the speed is set to zero when
limitations are active. This also explains why the equation of motion is written two times instead of
using the speed to integrate the position. Such a scheme would get the position stuck.

G=



xv−Limit( 1
(4Mv+2Bvh+h2ke)

(−Avh2 p1 +Avh2 p2 +Avh2 pre f+

+DS(−2Avh2 p1+2Avh2 p2 +2Avh2 pre f +2h2ke−8Mv),1)+
+DS(−Avh2 p1 +Avh2 p2 +Avh2 pre f +4Mvxv−2Bvhxv +h2kexv,2),0,xv,max)

vv− d
dx Limit(−Avhp1 +Avhp2 +Avhpre f +hkexv +DS(Bvvvh−2vvMv−Avhp1 +Avhp2 +Avhpre f +hkexv,1),0,xv,max)

CqwxvSigSqr( 2
ρ
(ps− pt))−qt

qs−qt

ps− (cs + zcsqs)
pt − (ct + zctqt)


(2.46)

The Hopsan simulation package is used to simulate the pressure relief valve is simulated in a simple
system where it limits the pressure in a volume.
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Figure 2.10

For the simulation the right valve is suddenly opened after 0.01 seconds, and then closed after
0.3 seconds. The time step for the simulation was 0.001 seconds. The simulation results shows that
the pressure releif valve reach the extremes during the transient, and handle that perfectly using a
fixed time step.

Figure 2.11: Spool position as a funciton of time. It hits limitation in both ends of the stroke.

�
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Figure 2.12: Pressure as a function of time.





3. Modelling of Hydraulic components

P. KRUS 1

3.1 Introduction

Modelling of components generally means that behaviour at a detail equation level need to be estab-
lished, in contrast to system modelling that is the assembly of predefined components/subsystems
into systems. This means that component modelling requires a different skill set. However, there is
a grey zone since some components can be build out of more primitive components. E.g. a simple
equation based pump model is rather straightforward to established, while a more detailed model
modelling flow pulsation can be made up as a system of pistons and valves. This also point to
the question of what is an appropriate level of detail in a simulation model. It thus becomes very
important to realize the purpose of the simulation model. In conceptual design of systems, rather
simple, low-fidelity (LF) models are needed. These are models that can represent the basic intended
functions of a component, as well as being able to represent the most important secondary effect,
e.g. basic losses. The reason to have simple models is not just a matter of using less resources in
defining them. At the conceptual stage, geometry and other details, of the component in the system
may not be known. Eg, it is known that a pump is needed but not what type, and certainly not the
exact type. Hence the extra level of parameters that needs to be defined, would not be known at this
stage, so a detailed model would just introduce more uncertainty. Furthermore, at the conceptual
stage simulation based optimization is a powerful tool, and to be efficient, simple models that can
be run thousands of times in a manageable amount of time are needed.

Looking at the design of an individual component a much higher level of detail is of course
needed, but it can be studied in a system where the boundary conditions are made by low-fidelity
models. For component design medium-fidelity models or even high-fidelity (HF) models including
field equation (CFD, FEM) may be used, alternatively high fidelity models can be used to establish
parameters in a medium fidelity model. In this chapter, modelling of low-fidelity models is

1© Available under a Creative Commons Attribution-Noncommercial-Share Alike license CC-BY-SA
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discussed.

Definitions of fidelity levels
A working definition for fidelity models used here is:

• Low fidelity models are useful in conceptual design when details of components are not
know.

• Medium fidelity models are useful in detail design when geometry of components are known
or a matter of design.

• High fidelity models can be useful in component design,

3.2 The Laminar Restrictor
In order to demonstrate the principle of component modelling the very simple laminar orifice is
used as an example. The pressure-flow relationship is:

q2 = (p1− p2)/Rv (3.1)

The following equations are solved at the component (connected to lines)

q2 = (p1− p2)/Rv (3.2)

q1 =−q2 (3.3)

p1 = c1 +Zc1q1 (3.4)

p2 = c2 +Zc2q2 (3.5)

Here Rv is the resistance of the orifice, Zc1 and Zc2 are the characteristic impedances of the lines
connected to the orifice.

Being a non-dynamic linear system, these equations can be solved for p1 and p2, The equations
used in the subroutines will thus be

q2 =
c1− c2

Rv +Zc1 +Zc2
(3.6)

q1 =−q2 (3.7)

p1 = c1 +Zc1q1 (3.8)

p2 = c2 +Zc2q2 (3.9)

This is a Q-component since flows, q1 and q2, are outputs and the wave variables, c1 andc2, are
inputs.A comparison with eq (3.6) and eq (3.2) shows that the adaptation to transmission lines has
the same effect on the equations as adding restrictors with the resistance Zc.

3.2.1 Bond-graphs in Transmission Line Modelling
Bond-graph modelling is a widely used technique for describing systems both at a system level and
at a detailed level. It is therefore of some interest to investigate how the bond-graph method relates
to distributed modelling. As an example the laminar restrictor is used.
From Eq (3.6) it is evident that the characteristic impedances of the lines can be treated as resistances
in series with the component. With is approach it is straightforward to use Bond-graphs to describe
components/subsystems on a detailed equation level. The Bond-graph description of the orifice is
shown in Fig 3.1. This Bond-graph is ill formulated and has to be rearranged if it should be possible
for the causalities to be defined in a consistent way. The modified Bond-graph with the causality
bars is shown in Fig 3.2. In many valves, orifices with nonlinear pressure-flow relationships are
present. Therefore, in complex components, with several restrictors in series and in parallel, it often
becomes impossible to solve the equations analytically.
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c1
Zc1 Rv Zc2

s s sSe Se 
p1 p2

R : Zc1 R : Zc2R : Rv

q2 q2 q2q2

c1 c2

c2
p1 p2

q2

Figure 3.1: Bond-graph of restrictor including the adjacent characteristic impedances.

sSe Se 

R : Zc1 +Rv  +Zc1

q2q2

c1 c2

Figure 3.2: Reformulated Bond-graph of restrictor with causality bars

There is, however, an alternative way to handle this situation. This is to never assign the
causalities. The Bond-graph is then used only to describe the relationships, without actually solving
the equations (which has to be done in order to assign the causality bars in a consistent way).
Instead, the (sub)system is represented as a differential algebraic system where no causality is
represented. In the transmission line, however, causality is very much present but are completely
determined by the underlying physics of the line. The reason for this, is that it is only in the
transmission line that the spatial dimension is represented, and it is only this fact that introduce
causality explicitly.

3.3 Turbulent restrictor

A very important component is the turbulent restrictor.

ORIFIT
N1 N2

Figure 3.3: Turbulent orifice

The flow in a turbulent restrictor with a positive pressure drop can be expressed as:

q2 =CqA0

√
2
ρ
(p1− p2) (3.10)

Here Cq is the discharge coefficient, A0 is the crossection area and ρ is the density of the fluid. This
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can also be written as:

q2 = Ks
√

p1− p2 (3.11)

Where Ks is the turbulent flow coefficient. This component is of the Q-type and should be connected
to C-type components such as volumes and lines or nothing. The following equations therefore
need to be solved

q2 =

{
Ks
√

p1− p2) if p1 > p2

−Ks
√

p2− p1) if p1 < p2
(3.12)

q1 =−q2 (3.13)

p1 = c1 +Zc1q1 (3.14)

p2 = c2 +Zc2q2 (3.15)

Equation (3.14) and (3.15) in (3.12) and with

Zct = Zc1 +Zc2 (3.16)

yields

q2 =

{
Ks
√

c1− c2−Zctq2 if p1 > p2
−Ks
√

c2− c1 +Zctq2 if p1 < p2
(3.17)

The square of these are

q2
2 =

{
−K2

s Zctq2 +K2
s (c1− c2) if p1 > p2

K2
s Zctq2−K2

s (c1− c2) if p1 < p2
(3.18)

Who can be solved for q2. Note that c1− c2 always has the same sign as p1− p2 since q2 = 0
when p1− p2 = 0. This means that the characteristics can be used to determine the direction of
flow. This finally yields that the equations for the orifice can be solved analytically.

q2 =


K2

s Zct
2 (
√

1+ 4(c1−c2)

K2
s Z2

ct
−1) if c1 > c2

K2
s Zct
2 (1−

√
1+ 4(c1−c2)

K2
s Z2

ct
) if c1 < c2

(3.19)

q1 =−q2 (3.20)

p1 = c1 +Zc1q1 (3.21)

p2 = c2 +Zc2q2 (3.22)

3.4 Geometry Based Model of an Orifice

In the previous examples the orifice was just represented with coefficients. An alternative approach
is to base the model on the geometry of the orifice. In Fig. 3.4 a orifice with geometric parameters
is shown. This can be considered as a medium fidelity model, since it requires a known geometry.
This model is based on a combination of equations for different regimes. These can be found in the
classic text book by Merrit [14]. These are:

Laminar flow through a slit conduit:

qa =
d2

hA0

48l0η
(p1− p2) (3.23)
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Figure 3.4: Parameters for a geometry based orifice model.

Here A0 is the cross section area, l0 is the length of the conduit, η is the dynamic viscosity, dh is
the hydraulic diameter:

dh = 4A0/S0 (3.24)

Here S0 is the perimeter of the hole. Note that for a circular hole dh is the actual diameter. Laminar
flow through a a circular hole can be calculated as:

qa =
d2

hA0

32l0η
(p1− p2) (3.25)

These two can be combined to form a general expression.

qa =
d2

hA0

(48−16s f )l0η
(p1− p2) (3.26)

Here s f is a correction factor that is equal to one for the circular hole and zero for a slit. Note
that this expression is not valid for very small values of l0. For a very short orifice the following
expression can be used.

qb =
δ 2dhA0

η
(p1− p2) (3.27)

Here δ is the laminar flow coefficient. A typical value is δ = 0.157
For high Reynolds numbers the flow becomes turbulent. The turbulent flow through an orifice

is:

qc = A0Cd

√
2(p1− p2)

ρ
(3.28)

The resulting flow would be the minimum of all these flows. A simple way to combine these ex-
pressions is to create a function that takes a smoothed minimum value from these three expressions.
This can be expressed as:

q2 =
1((

1
qa

)κ

+
(

1
qb

)κ

+
(

1
qc

)κ)1/κ
(3.29)

Inserting 3.26, 3.27 and 3.28 into 3.29 and rearranging to avoid division with zero at zero pressure
drop.

q2 =
p1− p2((

(48−16s f )l0
d2

h A0

)κ

+
(

η

2δ 2dhA0

)κ

+
(

ρ|p1−p2|
2(A0Cd)2

)κ/2
)1/κ

(3.30)



42 Chapter 3. Modelling of Hydraulic components

Fig 3.5 shows the different component of the flow equations for the following values:

dh = 0.0025m

A0 = 1×10−6m2

δ = 0.157

η = 0.12Ns/m2

l0 = 0.5×10−3m

ρ = 855kg/m3

κ = 4

Figure 3.5: The different components of flow in the geometry based model of a restrictor.

3.5 Modelling of a hydraulic cylinder
There is a transformation of power in the cylinder from fluid to mechanical which means that the
characteristics and impedances has to be converted.

Figure 3.6: Hydraulic cylinder

fp = A1 p1−A2 p2 (3.31)

q1 = A1vp

q2 =−A2vp
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where vp is the piston speed (ẋp). Introducing

fp = cx + zcxvp (3.32)

(3.32) and (1.53) in (3.31) yields

cx + zcxvp = A1(c1 +Zc1q1)−A2(c2 +Zc2q2) (3.33)

cx + zcxvp = A1(c1 +Zc1A1vp)−A2(c2−Zc2A2vp)

identification yields

cx = A1c1−A2c2 (3.34)

Zcx = A2
1Zc1 +A2

2Zc2

Here the flows, q1 and q2 and the speed vp (and position xp) are inputs and the fluid wave variables
c1 and c2 and the mechanical wave variable cx are inputs. This means that this is a C-component.
Limitations of the stroke are easiest to implement in the Q-component representing the mechanical
load.

The characteristic impedance for each volume is a function of time step and the capacitance of
the volume.

Zci = h/Ci (3.35)

The capacitance is a function of volume Vi of each volume, and the effective bulk modulus βe.

Ci =Vi/βe (3.36)

The volume depends on the stroke xp and the cross section area Ap.

Vi = (x0i− xp)Ap (3.37)

Here x0i represents the dead volume of the cylinder. It could also represent volumes in lines between
valves and cylinder. Note that the sign of the piston position is negative. This is because speed is an
input and hence should have a positive sign going into the cylinder. Consequently the position also
gets a negative sign then. Hence xp = [−xp,max,0]. Note that no friction has been mentioned here.
Because of the causality this has to be modelled on the load attached to the piston.

3.6 Modelling of Mechanical Subsystems
An important aspect of simulation of mobile hydraulics is that the mechanical structure and its
connections to the hydraulic actuators must be described. This can also be accommodated within
the framework of TLM. A spring can be modelled exactly as a short pipeline but with force instead
of pressure and speed instead of flow.

An inertia load with damping can be described so that it can be connected to transmission line
elements, if the following equations are used.

Mv̇2 =−Bv2 + f1− f2 (3.38)

ẋ2 = v2 (3.39)

v1 =−v2 (3.40)

x1 =−x2 (3.41)

f1 = cx,1 + v1Zcx,1 (3.42)

f2 = cx,2 + v2Zcx,2 (3.43)
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Figure 3.7: Mechanical inertia load

In this case the equations can also be solved analytically to obtain the following set of independent
equations:

v̇2 =
−v2 (Zcx,1 +Zcx,2 +B)+ cx,1− cx,2

M
(3.44)

ẋ2 = v2 (3.45)

v1 =−v2 (3.46)

x1 =−x2 (3.47)

f1 = cx,1 + v1Zcx,1 (3.48)

f2 = cx,2 + v2Zcx,2 (3.49)

These equations can be solved using bilinear transform which corresponds to the implicit trapezoidal
rule.

An important observation from equation 3.49 is that B and Zcx have the same influence. It is a
general observation that Zc has the same effect as damping in components. The reason for this is
that the phase shift cased by the fact that c represents old information is compensated for by the
additional damping,and this is a good way to check if a model seems right. The pressure/force is
replaced by a characteristic and damping is added to the model.

When it comes to sign conventions they are the same as for flows. That is, speeds entering
a spring are positive and speeds leaving an inertia load are also positive. This may cause some
confusion when it comes to positions who are the integrals of speeds. The convention is that
positions on two sides of an inertia are mirror images of each other. This is important to realize
when assigning start values to the loads. They should have the same value but different sign.
Furthermore, this implicates that the position at the piston will always have negative sign. In Fig 3.8
a block diagram of the (Laplace transformed) equations of an inertia load connected to a mechanical
spring is shown.

Figure 3.8: Block diagram showing a mass connected to a TLM sring and a force source. (Dealing
with limitations, numerical drif etc are not included).
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3.6.1 Dealing with limitations
Sometimes a variable is subjected to limitations. In the case of the inertia load there could be
limitation in the position. The position can be limited by just incorporating a function that cuts of
the variable value at the appropriate level. The situation is, however, complicated by the fact that
there is a connection between speed and position. Therefore the speed has to be handled as well.
It should take on the value of zero as soon as the position hits a limitation. Since the position is
integrated from speed this situation leads to a dead-lock once a limitation is activated (since speed
is zero as long as the position is limited, the position cannot start to move out of the limitation).
Since introducing limitations on the variable x2 in the form of xmin and xmax and also having it affect
the derivative v2. Therefore, both speed and position are solved from essentially the same equation,
thereby removing the dependency between them.

F =



Mv̇2 +Bv2− f1 + f2
Mẍ2 +Bv2− f1 + f2

v1 + v2
x1 + x2

−cx,1− v1Zcx,1 +F1
−cx,2− v2Zcx,2 +F2

 (3.50)

The limitations need to be introduced after transformation to time discrete form.

G =



DS(1,−h f1 +h f2−2+Bhv2Mv2)−h f1 +h f2 +Bh2v2 +2Mv2
DS
(
1,−2h2 f1 +2h2 f2 +2Bh2v2−8Mx2

)
+

+DS
(
2,−h2 f1 +h2 f2 +Bh2v2 +4Mx2

)(
−h2 f1 +h2 f2 +Bh2v2 +4Mx2

)
v1 + v2
x1 + x2

−cx,1− v1Zcx,1 +F1
−cx,2− v2Zcx,2 +F2


(3.51)

At this stage the limitations on x2can be introduced, using the Limit2 function. (The limit2
function is used instead of "Limit" is when not only the variable itself is affected, but there is also a
derivative to be adjusted).

x2,L = limit2(x2,v2,xmin,xmax) (3.52)

The corresponding effect of the limitation on the speed becomes

v2,L = v2
∂

∂x2
(limit2(x2,v2,xmin,xmax)) (3.53)

It is hereafter renamed to

v2,L = v2limit2′ (x2,v2,xmin,xmax) (3.54)

Here limit2′ is the derivative of limit2. It is zero as long as the limitations in x are violated and v2
is moving in the same direction as the constraint, but take on the value of one, in between.

The Limit2 function is just like a normal limitation function

limit2(x,v,xmin,xmax) = If[x > xmax,xmax, If[x < xmin,xmin,x]] (3.55)

but its derivative with respect to x is defined as:

limit2′(x,v,xmin,xmax) = If[x > xmax∧ v > 0,0, If[x < xmin∧ v < 0,0,1]] (3.56)
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Thelimit2 function is plotted as a function of x and v in Fig 13 and the expression used to represent
limit2′ is plotted in Fig 14. Here xmax is set to 1 and xmin to −1.
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Figure 3.9: The limit2 function as a function of x and v (v have o influence)
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Figure 3.10: The limit2′ function as a function of x and v

Using this limitation in the equation set yields

G =



v2 +
(DS(1,v2(Bh−2M)+ f1(−h)+ f2h)+( f2− f1)h)Limit2′(x2,v2,xmin,xmax)

Bh+2M
x2−Limit2

(1
2 (hv2−DS(1,−hv2−2x2)) ,v2,xmin,xmax

)
v1 + v2
x1 + x2

−cx,1− v1Zcx,1 +F1
−cx,2− v2Zcx,2 +F2


(3.57)
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This function can then be differentiated to obtain the Jacobian and be solved using Newton-
Raphsson.

3.7 Modelling Two Masses as One Component

Sometimes it is useful to model two masses as one component. This could for instance be if there
is a limitation on the relative position of these masses or if an actuator is inserted between the two
masses, creating the need for a single node between the masses.

Figure 3.11: Two mass system modelled as one component.

The system of equations (without the boundary equations) for this system can be written as:

m1v̇1 = f3− f1 (3.58)

m2v̇2 = f3− f2 (3.59)

ẋ1 = v1 (3.60)

ẋ2 = v2 (3.61)

v3 = v1 + v2 (3.62)

x3 = x1 + x2 (3.63)

This is, however, not the alternative to do. If a limitation is to be introduced in x3 (and v3) it is
more appropriate to use x3 (and v3) as one of the integration variables directly and to create another
variable that is independent of x3 as the other integration variable. The position of the centre of
gravity for the two masses, can be calculated as:

(m1 +m2)svcg = m2sv2−m1sv1 (3.64)

Using that equation together with the equations for the speeds v1, v2, and v3 yields the following
system of equations

m1v̇1 = f3− f1 (3.65)

m2v̇2 = f3− f2 (3.66)

v3 = v1 + v2 (3.67)

(m1 +m2) v̇cg = m2v̇2−m1v̇1 (3.68)
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This system of equations can be solved for v3 and vcg (and v1, v2 ) to yield the following equations

v̇3 =−
f2m1− f3m1− f1m2− f3m2

m1m2
(3.69)

v̇cg =
f1− f2

m1 +m2
(3.70)

v1 and v2 can then be expressed as functions of these as:

v1 =−
m1vcg +m2vcg−m2v3

m1 +m2
(3.71)

v2 =−
−m1vcg−m2vcg−m1v3

m1 +m2
(3.72)

The new total system of equations for this system, where also the boundary conditions has been
added can the be written as:

v̇cg =−
f2m1− f3m1− f1m2− f3m2

m1m2
(3.73)

v̇3 =
f1− f2

m1 +m2
(3.74)

ẋcg = xcg (3.75)

ẋ3 = x3 (3.76)

v1 =−
m1vcg +m2vcg−m2v3

m1 +m2
(3.77)

v2 =−
−m1vcg−m2vcg−m1v3

m1 +m2
(3.78)

x2 =−
−m1xcg−m2xcg−m1x3

m1 +m2
(3.79)

x1 = x3− x2 (3.80)

f1 = cx,1 + v1Zcx,1 (3.81)

f2 = cx,2 + v2Zcx,2 (3.82)

f3 = cx,3 + v3Zcx,3 (3.83)

In this way, the limitations, or actuator, can be placed and affect only x3 and v3 directly.

3.8 A Mechanical Spring as a Transmission line element
Modelling of a mechanical spring as a transmission line element is similar to the modelling of a
hydraulic capacitance, but with speed instead of flow and force instead of pressure. Note that the

Figure 3.12: Spring as a unit transmission line element

sign convention is here the same as for a fluid system. It could, however, be argued that a direction
should be introduced, since it is obvious to do so for the two and three dimensional cases, where
position, and force etc are vectors in space. As for now in the One dimensional case they are treated
as scalars.
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cx,2(t +h) = f1(t)+Zcxv1(t) (3.84)

cx,1(t +h) = f2(t)+Zcxv2(t) (3.85)

Inserted in (31) and (32) yields

f1(t) = cx,1(t) = +Zcxv1(t) (3.86)

f2(t) = cx,2(t) = +Zcxv2(t) (3.87)

where c1 and c2 contain all information of the opposite node necessary for the calculation of
pressure and flow at one node. The characteristic impedance is calculates:

Zcx =
h
k

(3.88)

At each component between the lines,we then have to solve the following system of equations.

v = v( f ) (3.89)

f = cx + vZcx (3.90)

The parasitic impedance, which here has the unit of mass, and hence represents a parasitic mass,
can be calculated as

mp = hZcx =
h2

k
(3.91)

This means that the spring model also has a mass distributed along its length. This of course
represents a modelling error if an ideal spring should be modelled. If the spring is connected to a
mass mL this will reduce the resonant frequency of the system. However, since the parasitic mass
can be computed the mass that it is connected to, can be reduced correspondingly. The reduced
mass can be calculated as:

m′L = mL−
mp

2
(3.92)

This can of course only go on as long as the reduced mass is greater than zero.
Since the primary variables in the spring is the speeds and these speeds are integrated into

positions at the adjacent component there is a risk that there is a numerical drift in the integration
represented by the transmission line component, with respect to the integrations in the adjacent
component. Therefore it can be useful to have a week feedback to adjust the values of f1 and f2 so
that the average becomes:

f = k (x2− x1− x0) (3.93)

Here x0 is the free length of the spring. Introducing the force error as:

fe = f − 1
2
( f1 + f2) (3.94)

The transmission line equations is then modified to

cx2(t +h) = f1(t)+Zcxv1 (t)+ feεe (3.95)

cx1(t +h) = f2(t)+Zcxv2 (t)+ feεe (3.96)

where εe is a very small number. In this way numerical drift can be avoided.
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3.9 Rotational Mechanical System
In rotational mechanical systems we are looking at rotating shafts and machines. This is particularly
usefull to represent drive trains. The most fundamental components here are a moment of inertia
(instead of a mass) and a rotating shaft instead of a spring. In addition, rotating system almost
always contains gears.

3.10 A General Formulation of a Mechanical System
In order to make a realistic simulation of a hydraulic system it is necessary to include a representa-
tion of the load. Often this is a complex mechanical structure with interacting parts. This is true
in e.g. mobile systems, such as lorry cranes, forest machines and excavators. Fig. 3.13 shows a
simplified model of a crane represented by just three degrees of freedom. It would be possible to use
a more complete 3D models to have more accurate description of the system dynamics. However, in
many cases, and especially in conceptual design, a 2D model is just as adequate. The computational
burden and also the modelling work, increases steeply with a full 3D model. Even if e.g. a crane
can move in three dimensions the dimensions have a weak coupling. E.g. the rotation is only
weakly coupled to the movements of the pistons. Computational speed is particularly important in
for conceptual design when simulation based optimisation is used. Here thousands of simulations
might be needed, and therefore, simulation speeds much faster than real time is required. Especially
when designing a e.g. a hydraulic control system, the mechanical model need not have much more
degrees of freedoms than the number of actuator. Typically the flexibility in a mechanical structure
can be aggregated at the base as the stiffness k0 in Fig. 3.13.

Figure 3.13: Simplified representation of a crane with three degrees of freedoms. There is a flexible
joint at the base and two actuated joints. There is one point masses for each joint and one at the tip.
They are connected with stiff beams

A flexible joint is located at the base of the crane to represent the flexibility inherent in the
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structure. Each beam is represented by a mass and an inertia moment.
As a consequence the crane can be described by three coordinates corresponding to the angles

θ that are used as the independent generalized coordinates. This is indicated in Fig. 3.13.

3.10.1 The Euler-Lagrange equation
One approach that is useful for this kind of mechanics is the extended Euler-Lagrange equation.

∂

∂ t
∂L
∂Θ
− ∂L

∂ Θ̇
+

∂D
∂ Θ̇

= FΘ (3.97)

Here L is the difference between kinetic energy T and potential energy V .

L = T −V (3.98)

It has here been extended with the dissipative power D.
Considering a simple mass spring damper system.

Figure 3.14: Mass spring damper system.

For this system these terms would be:

T = m
ẋ2

2
(3.99)

V = k
x2

2
+mgx (3.100)

Hence

L = m
ẋ2

2
− k

x2

2
−mgx (3.101)

D = b
ẋ2

2
(3.102)

Furthermore FΘ = f and with Θ = x, Eq. 3.97 becomes:

∂

∂ t
∂

∂x

(
m

ẋ2

2
− k

x2

2
−mgx

)
− ∂

∂ ẋ

(
m

ẋ2

2
− k

x2

2
−mgx

)
+

∂

∂ ẋ

(
b

ẋ2

2

)
= f (3.103)

Performing the differentiations yields:

mẍ+bẋ+ kx+mg = f (3.104)
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In this way we have arrived to the well known equation of motion for this spring-mass system. Of
course, for this simple system, this is somewhat of a detour, but for more complicated systems it is
a rather powerful method.

The elements for Lagrange equation for the crane system in Fig. 3.13 can be written as:

T = m1
ẋ1

2 + ẏ1
2

2
+m2

ẋ2
2 + ẏ2

2

2
+m3

ẋ3
2 + ẏ3

2

2
(3.105)

The potential energy is:

V = k0
θ0−θbase

2
+m1gy1 +m2gy3 +m3gy3 (3.106)

Having some viscous friction at the joints would generate dissipative power.

D = bv0
θ̇0

2
+bv1

θ̇1

2
+bv2

θ̇2

2
(3.107)

Furthermore, the geometric relations have to be established. Using the angles and their differentials
as the independent variables, the positions and their derivatives can be calculated as:

x1 = l1 cosθ0 (3.108)

y1 = l1 sinθ0 (3.109)

x2 = l2 cosθ1 + x1 (3.110)

y2 = l2 sinθ1 + y1 (3.111)

x3 = l3 cosθ2 + x2 (3.112)

y3 = l3 sinθ2 + y2 (3.113)

Then the relationships for the differentials are simply

ẋ1 =
d
dt
(l1 cosθ0) =−l1θ̇0 sinθ0 (3.114)

and so on for the other variables. If there are angular motors at each joint, the moment from these
would be inserted into the vector FΘ. However, if pistons are used the geometry needs to be defined.
In Fig. 3.15 a general interface is shown. Since the interface to this model would be the pistons, the
boundary equations have to be expressed in the piston coordinates.

fpi = cpi +Zcpiẋpi (3.115)

The speed at the pistons are:

˙xpi =−ri(θ̇i− θ̇i−1) (3.116)

The moments for each joint can be calculated from the piston forces as:

Ti = fpiri (3.117)

To get the piston position and the radius ri can be obtained from the figure 3.15 as The total
length of the cylinder is:

lpi =
√
(xci2− xci1)2 +(yci2− yci1)2 (3.118)
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Figure 3.15: Interface of a piston to a mechanical joint.

Here

xci1 = bi1 (3.119)

yci1 =−ai1 (3.120)

xci2 = ai2 sinθci +bi2 cosθci (3.121)

yci2 =−ai2 cosθci−bi2 sinθci (3.122)

The instantaneous radius can be calculated as:

ri =
dl̇p1

dθci
(3.123)

where

θci = π +θi−θi−1 (3.124)

Here

θci = π +θi−θi−1 (3.125)

Finally

xpi =−(lp1− x0i) (3.126)

Here x0 is the length of the totally compressed piston. The minus sign is because of the sign
convention. The piston has a negative speed going out and hence the piston position is always
negative.

3.10.2 General formulation of mechanical structures for TLM
A more general formulation of the mechanical structure is represented by equation.

M(Θ)Θ̈+B
(
Θ,Θ̇

)
Θ̇+KΘ+Fg,Θ = FΘ (3.127)
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where Θ is a position/angle vector and FΘ is a force/moment vector of external forces eg actuators.
Fg,Θ is a vector representing gravitational forces. M is the inertia matrix, B is the matrix representing
friction, centripetal and Coriolis effects, and K is the stiffness matrix. These matrices could be the
outputs from some FEM-program or from some program that linearises the non-linear dynamic
equations of a mechanical system. The force vector from the actuators can be written

Fx = cx + ẋZcx (3.128)

where cx is a vector with force characteristics, x is a vector with the actuator positions and Zcx is a
diagonal matrix with the characteristic impedances of the actuators in the diagonal. This equation
is similar to (3.86) except that it is on vector form.

Before they are able to interact with the mechanical structure they have to be transformed into
the coordinates of the structure. The speeds of the mechanical structure are transformed into speeds
at the actuators.

ẋ =−R(Θ)Θ̇ (3.129)

The negative sign is due to the fact that the direction of force and resulting motion is the same in
(3.127) but opposite in (3.89). The forces from the actuators are transformed into forces/moments
acting on the mechanical structure by the same matrix R All dependency of Θ̇ on R is hereafter
assumed implicitly.

FΘ = RT Fx (3.130)

Using (3.128) and (3.129) in (3.130) the force/moment vector can be written

FΘ = RT (cx−ZcxRΘ̇
)

(3.131)

Introducing

cΘ = RT cx (3.132)

The characteristic impedance projected on the angular coordinates becomes:

ZΘ = RT ZcxR (3.133)

Equation (3.131) can then be rewritten as

FΘ = cΘ− Θ̇Zc,Θ (3.134)

Equation (3.134) in (3.127) and rearranging yields

Θ̈ =−M−1 (B+Zc,Θ +B)−KΘ+Fg,Θ + cΘ (3.135)

In (3.135), cΘ only contains old information from the previous time step. This means that it can be
regarded as an independent input signal. In (3.134) the input signal F is strongly dependent on Θ̇,
which means that Θ cannot be solved independently from F. Equation (3.135) can be written on
state space form

ẏ = Ay+u (3.136)

where

A =

(
−M−1 (ZΘ +B) −M−1K

I 0

)
(3.137)
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u =

(
Fg,Θ + cΘ

0

)
(3.138)

y =

(
Θ̇

Θ

)
(3.139)

This equation can then be solved using an implicit integration method such as the trapez method,
since everything is known and the Jacobian can be easily computed. The interface are through the
wave variables cθ associated with force, and these can be regarded as pure inputs. This demonstrate
one of the main advantages of the transmission line modelling, that it can be used to bridge different
kinds of systems together. in this case the mechanical structure can be solved independently from
other components (in each time step) since it is numerically isolated from the other.

3.11 Electrical Components
Electrical components can be modelled in much the same way as hydraulic components. In fact the
term trasnmission line modelling TLM was coined in the paper by Johns and O’Brien [7] where it
was applied to electrical circuits.

Although there are large conceptual similarities between electrical and hydraulic systems, there
are also important differences. One difference is that electrical system in general are more stiff.
This basically come down from the fact that the signal propagation speed in electrical system is
very high, i.e. the speed of light wich is 3×108 m/s, which is more that five orders of magnitude
higher than in hydraulic systems. Another difference is that electrical components are in general
more linear than their hydraulic counterparts. This means that differential algebraic solvers can
be used efficiently also for larger systems. However, for large systems it is still very usefull to
use transmission line elements to partition a model. Furthermore, depending on the time scale of
interesst electrical systems can be simulated using transmission line method in its entierly. This is
particularly true when it comes to model electrical power systemsto be used in conceptual design.

3.11.1 Electrical capacitance
The two port electrical capacitance is the equivalent of a two port hydraulic volume.

Figure 3.16: Two port electrical capacitance

c1(t) = Zci2(t−T )+u2(t−T ) (3.140)

c2(t) = Zci1(t−T )+u1(t−T ) (3.141)

c1,c2 are called the characteristics and they represents the waves traveling in each direction through
the line. Zc is the characteristic impedance and is calculated from the capacitance C and the time
step h.

Zc = h/C (3.142)
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The parasitic inductance is:

Lparasitic = Zch =
h2

C
(3.143)

Filtering of the wave variables can be introduced in the same way as for the hydraulic capacitance.
It is also possible to implement a multi port version in the same way as for hydraulic volumes.

3.11.2 Electrical inductance

Interesstingly an electrical inductance can be modelled both as a Q-component and as a C-
component. When modelled as a C-component i.e. as a transmission line element the characterist

Figure 3.17: Electrical inductance

impedance is chosen such that the inductance is correct.

Zc = L/h (3.144)

This means there will be a parasitic capacitance.

Cparasitic = h/Zc =
h2

L
(3.145)

Modelling the inductance as a Q-component means that the following system of differential
algebraic equations has to be solved:

di2
dt

= (u1−u2)/L (3.146)

i1 =−i2 (3.147)

u1 = c1 +Zc1i1 (3.148)

u2 = c2 +Zc2i2 (3.149)

3.11.3 Electrical resistance

The electrical resistance is the equvalent of a hydraulic laminar orifice.

Figure 3.18: Electrical resistance

When the restrictor is connected to transmission lines the following equations are solved for
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the restrictor.

i2 = (u1−u2)/R (3.150)

i1 =−i2 (3.151)

u1 = c1 +Zc1i1 (3.152)

u2 = c2 +Zc2i2 (3.153)

The equations used in the component will thus be

i2 =
c1− c2

R+Zc1 +Zc2
(3.154)

i1 =−i2 (3.155)

u1 = c1 +Zc1i1 (3.156)

u2 = c2 +Zc2i2 (3.157)
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